
1

JETPIPELINE: A HYBRID PIPELINE ARCHITECTURE FOR INSTRUCTION-LEVEL PARALLELISM

MASAYUKI KATAHIRA, HONG SHEN, HIROAKI KOBAYASHI AND TADAO NAKAMURA

Department of Computer and Mathematical Sciences, Graduate School of Information Sciences, Tohoku University,
Aramaki Aza Aoba, Aoba-ku, Sendai 980-77, JAPAN

ABSTRACT
High performance processors based on pipeline processing play an important role in scientific and engineering
computation. However, it is difficult to gain a satisfactory solution when taking both high degree of flexibility
of parallel processing and low hardware complexity into account. This paper propose a hybrid pipeline
architecture named Jetpipeline that possesses high degree of flexibility in parallel processing as well as suitable
hardware complexity. Jetpipeline incorporates several instruction pipelines together. Multiple ALUs and floating
point arithmetic pipelines are respectively used in the execution stages of these instruction pipelines. An
instruction set for Jetpipeline is described in detail. Furthermore, a policy for scheduling instructions to
instruction pipelines is discussed. The simulation results offer us the potential of Jetpipeline.

1. Introduction

The progress of modern science and technology has
brought us with a rapid increase in fast and massive
computation requirements for scientific and
engineering applications such as weather forecast,
nonlinear system calculation and real-time control.
Although the important development of VLSI
technology allows a stable increase in the speed of
processors, it is quite difficult to keep the speed
growth of processors through hardware technology
alone.

On the other hand, a good processor architecture
can provide us with high performance/price ratio by
organizing existing hardware devices reasonably. In
the area of high performance processors, the
implementation of superscalar machines[1][2][3] and
the VLIW machines[3] [4] [5] [6] [7] is one of the
achievements drawing wide attention besides vector
machines.

Superscalar machines were developed because of
the introduction of parallel processing into
microprocessors. A superscalar machine with
degree n can issue n instructions per cycle.
However, there must be n instructions executable in
parallel at all pipeline cycles to fully utilize a
superscalar machine. Moreover, the superscalar
machine suffers quite complex hardware
configuration because it has to support the selection
of which operations to be issued in a given cycle at
run time. On the other hand, VLIW machines were
proposed to solve the hardware difficulty of
superscalar machines. VLIW machines have

instructions with hundreds of bits long, each of the
instructions can specify multiple operations that are
executed in parallel. Since VLIW instructions have a
fixed format, it is easier to decode VLIW instructions
than superscalar instructions. Thus the hardware of
VLIW machines is more simple in comparison with
superscalar machines. Unfortunately, not always
can all fields of a VLIW instruction specified by a
fixed format be utilized in usual programs.
Therefore, the lack of flexibility leads to a waste of
hardware resources of VLIW machines.

This paper proposes a hybrid pipeline architecture to
absorb the advantages of superscalar machines and
VLIW machines. We borrow the speedy image of jet
airplanes, and name the proposing architecture
Jetpipeline. Jetpipeline is composed of several
instruction pipelines, and the execution stages of
these instruction pipelines include integer ALUs and
floating point arithmetic pipelines. Thus, Jetpipeline
can issue multiple instructions in a cycle like a
superscalar machine. However, the scheduling of
Jetpipeline instructions is statically performed at
compile time so that the complicated hardware
operations examining a sequence of instructions and
investigating data dependencies among operands
can be prevented. Although the static scheduling is
somewhat similar to that of a VLIW machine,
Jetpipeline possesses more flexibility than a VLIW
machine because instructions executed in parallel in
Jetpipeline are just grouped rather than decoded in a
fixed long word like a VLIW machine. Therefore,
Jetpipeline can be treated as a hybrid architecture of
superscalar architectures and VLIW architectures.

2

IF ID

＋
÷

×

R
E

G
IS

T
E

R
S

INSTRUCTION
PIPELINEs FLOATING POINT

PIPELINEs

JOINT
NETWORK

SCALAR
INSTRUCTIONS

VECTOR
INSTRUCTION

DATA AREAPROGRAM AREA

MEMORY

ALUs

IF ID

IF ID

Figure 1 : Overview of Jetpipeline.

Superscalar

VLIW

Jetpipeline

Instruction fetch
Stage with par-
allel processing

Controlling/
Scheduling policy

The support of
compiler

Instruction
compatibility

Multiple instructions
are fetched per cycle.

Execution stage
e.g. IU, FPU,

Load/Store

One long instruction
is fetched per cycle. Execution Stage

One group with
multiple instructions
is fetched per cycle.

Execution Stage

The scheduling is
performed by hardware
at run time. (The kinds
of concurrent operations
are restricted.)

The scheduling is
performed by software
at compile time. (The
operation of each field
in instruction is fixed.)

The scheduling is performed
by software at compile time.

It is unnecessary, but
specialized compiler
can improve the
system performace.

Necessary

Necessary

Yes

No

No

The comparison of superscalar machines, VLIW
machines and Jetpipeline.

(Any combination of
concurrently executed
instructions is possible.)

Table 1 :The rest of this paper is organized as follows.
Section 2 describes the concept of Jetpipeline.
Section 3 presents a prototype architecture for
Jetpipeline. The design details such as an
instruction set and instruction scheduling are also
discussed in this section. Simulated performance
studies are carried out in Section 4. Finally, the
paper concludes with Section 5.

2. The Concept of Jetpipeline

As mentioned before, Jetpipeline exploits
instruction-level parallelism. There are multiple
instruction pipelines bundled into Jetpipeline. ALUs
and floating point arithmetic pipelines correspond to
the execution stages of these instruction pipelines.
Figure 1 gives the concept of Jetpipeline
architecture. As shown in Figure 1, when the
inputted instructions, data and the outputted results
are considered as air, fuel and burnt gas, the entire
system can be considered as a jet engine.
Therefore, we call the architecture Jetpipeline.

In Jetpipeline, multiple instructions can be issued in
one pipeline cycle like a superscalar machine. The
compiler for Jetpipeline schedules instructions from a
source program, and packs instructions for the same
pipeline cycle as a group. At run time, packed
instructions are scheduled to respective instruction
pipelines, and executed in parallel. Hence,
scheduling instructions is performed statically by a
compiler like a VLIW machine. Therefore,
Jetpipeline may be treated as a hybrid architecture of
superscalar machines and VLIW machines.

However, Jetpipeline differs much from both
superscalar machines and VLIW machines. Table 1
compares the major features of Jetpipeline with
superscalar machines and VLIW machines.
Although Jetpipeline issues multiple instructions per
cycle, it does not schedule instructions relying on

hardware at run time. It is unnecessary to keep the
compatibility of instructions with an expensive cost of
hardware such as superscalar machines. Besides,
it is quite difficult for superscalar machines to
schedule vector instructions that will spend lots of
cycles on hardware without any waste. On the other
hand, instructions executed in parallel in Jetpipeline
are just packed together different from VLIW
machines. The format of instructions in VLIW
machines is fixed, and each long instruction word
specifies multiple operations. A VLIW machine
issues only one instruction per pipeline cycle.
Operations specified in a VLIW instruction are
unfolded at the execution stage. In Jetpipeline,
however, instruction pipelines are independent with
each other. These instruction pipelines are
controlled by a group of instructions packed together
at compile time, not by a long instruction word.
Thus, Jetpipeline is more flexible than VLIW
machines and a waste of instruction bits can be
avoided.

3. The Prototype Architecture

In this section, we present the prototype architecture
to implement the Jetpipeline model. We examine
the prototype architecture at the functional block
level. The instruction set and scheduling policy are
also discussed in this section.

3.1 The Hardware Configuration
In order to realize Jetpipeline, we make PEs be
tightly coupled with registers to form a high
performance processor capsule. Figure 2
shows the Jetpipeline system configuration with
four instruction pipelines at the functional block
level. Figure 3 shows the stages of instruction
pipelines and the functions of each stage.

As shown in Figure 3, each of the instruction
pipelines(Inst.pipe, IP) consists of six stages that
are instruction fetch stage(IF), instruction
decode and register fetch stage(ID) and four
execution stages. The stages are overlapped

3

Figure 2 : System architecture of the functional block level.

Inst. pipe 0

Inst. pipe 1

Inst. pipe 2

Inst. pipe 3

ALU0

ALU1

ALU2

ALU3

Vector/

Scalar

Registers

FP pipeline×2 /
Vector ALU /
controller

Vector LDP/STP × 4

Main memory

Scalar LDU/STU × 4

Control

DataInst.

cache

CN

Inst. pipe : Instruction pipeline

Inst. cache : Instruction cache

FP pipeline : Floating point calculation pipeline

CN : Interconnection network

LDU/STU : Load unit/Store unit

LDP/STP : Load pipeline/Store pipeline

Instruction

Vector processing unit 0

Vector processing unit 1

FP pipeline×2 /
Vector ALU /
controller

IF ID

IF ID EX1 EX2 EX3 EX4

IF ID EX1 EX2 EX3 EX4

IF ID EX1 EX2 EX3 EX4EX4EX3EX2EX1

Figure 3 : The structure of instruction pipelines.

integer ALU

load/store

jump/compjump

load/store

jump/compjump

float ADD/SUB

float MUL/DIV

float ADD/SUB

float MUL/DIV

load/store

float ADD/SUB

float MUL/DIV

load/store

float ADD/SUB

float MUL/DIV

integer ALU

integer ALU

integer ALU

IP0/IP1 scalar IP2/IP3 scalar IP0/IP1 vector IP2/IP3 vector

Figure 4 : Simultaneous instruction execution restrictions.

Legend: Can be executed simultaneously (provided no data dependencies exist)

Cannot be executed simultaneously

I
P

0
/I

P
1

sc
a l

a r
I

P
2

/I
P

3
sc

a l
a r

I
P

0
/I

P
1

ve
c t

o r
I

P
2

/I
P

3
ve

c t
o r

in
t e

g
re

A
LU

lo
a

e
t

r
d

o
s /

ju
m

p
oc /
m

p j
u m

p

lo
a

U
t

S
f

D
A

/
D

B

lo
a

I
t

L
f

U
M

/D
V

in
t e

g
re

A
LU

in
t e

g
re

A
LU

lo
a

e
t

r
d

o
s /

ju
m

p
oc /
m

p j
u m

p

lo
a

U
t

S
f

D
A

/
D

B

lo
a

I
t

L
f

U
M

/D
V

lo
a

e
t

r
d

o
s /

lo
a

U
t

S
f

D
A

/
D

B

lo
a

I
t

L
f

U
M

/D
V

in
t e

g
re

A
LU

lo
a

e
t

r
d

o
s /

lo
a

U
t

S
f

D
A

/
D

B

lo
a

I
t

L
f

U
M

/D
V

every two clock cycles.

Because arithmetic logic unit(ALU) is utilized
most frequently for executing scalar instructions,
it is necessary to set up an ALU for each
instruction pipeline. Therefore, there are four
ALUs to satisfy the requirements from the four
instruction pipelines. In Figure 2, each of the
two vector processing units consists of two
floating point calculation pipelines(FP pipeline)
for the four fundamental arithmetic operations,
an ALU for vector operation, and a controller for
vector operation. Since these two units are
shared by any two neighboring instruction
pipelines, the same kind of vector instructions
cannot be executed in parallel at two
neighboring instruction pipelines. In addition,
the two floating point operation pipelines in each
of the block are shared by both vector
ins t ruc t ions and sca lar ins t ruc t ions.
Consequently, the same kind of scalar floating
point instructions cannot be concurrently
executed during the execution of vector floating
point instructions. However, scalar instructions
except floating point instruction can be executed
in parallel with vector instructions because
vector instructions are executed under the
control of vector operation controller in the block.
Figure 4 shows these restr ictions of

simultaneous instruction execution. The
interconnection network(CN) between the two
blocks is designed for vector chaining
operations.

Registers used in the Jetpipeline architecture
are divided into vector registers and scalar
registers. In order to support conditional
operations, the vector mask register(VMR) is
prepared. The registers are banked to meet the
requirements of high speed accesses from ALUs
and floating point calculation pipelines.

In Jetpipeline, the data transmission between
registers and the main memory relies on the
scalar load/store units(LDU/STU) and the vector
load/store pipelines(LDP/STP). The number of
the LDU/STUs and the LDP/STPs corresponds
to the number of the instruction pipelines.
Therefore, it is possible to perform high speed
data transmission for both scalar and vector
load/store instructions. Moreover, the
instruction cache(Inst.Cache) is provided to
decrease the latency at the instruction fetch
stage.

3.2 The Instruction Set
The instruction set of an architecture reflects the
function of the architecture. The instruction set
for Jetpipeline is not an exception. In order to
keep the conciseness of the Jetpipeline

4

Representative scalar instruction format (scalar integer/float operation)

31 29 28 24 23 16 15 8 7 0

Type Detail
(operation type)

Source 1 Source 2 Destination

Opcode Operands

Type=000:Load
Type=001:Store
Type=010:Integer operation
Type=011:Floating operation

Type=100:Jump
Type=101:Compare and Jump
Type=110:Vector instruction
Type=111:(undefinded)

Representative vector instruction format (vector integer/float operation)

31 29 28 21 18 17 6 5 020 1112

1 1 0
Type=Vector Detail

(operation type)
VR Source 1 VR Source 2 VR Destination

Opcode Operands

VMR

Figure 5 : Instruction format.

architecture, we build up the instruction set for
Jetpipeline based on RISC approaches[8][9][1 0]

[1 1][1 2]. The length of Jetpipeline instructions is
fixed to 32 bits. Table 2 lists out the major kinds
of Jetpipeline instructions, and their execution
processes on the instruction pipelines. Figure 5
gives the format of the Jetpipeline instructions.

The scalar instructions of Jetpipeline are
designed based on the Stanford MIPS
architecture[8] [1 3]. Concretely, the scalar
instructions consist of load/store instructions,
register operation instructions and branch
instructions. The branch instructions include
the compare-and-jump instructions in addition to
the branch instructions based on conditional
codes.

The vector instructions are designed referring
the NEC SX supercomputer[1 4]. The vector
instruction set includes vector load/store
instructions, vector register instructions of
integer and floating point operations, other
vector instructions such as mask register
operation, and so on. Besides this, chaining
operation is also controlled at the instruction
level.

Table 2 : The Jetpipeline instructions.
Instruction Type Pipe- Description

stage
IF fetch instruction from memory

All instructions PC + 1 -> PC
ID decode instruction

integer EX1 src1,src2 -> ALU -> dest
operation
floating EX1 src1,src2 -> floating(A/S) pipeline (add/sub)
operation src1,src2 -> floating(M/D) pipeline (mult/div)

EX2 no operation
EX3 floating(A/S) pipeline -> dest (add/sub)
EX4 floating(M/D) pipeline -> dest (mult/div)

Scalar load/store EX1 src1,0 -> ALU -> dest (load immediate)
instruc- src1,src2 -> ALU -> LU addr. latch (load)
tion src1,src2 -> ALU -> SU addr. latch (store)

EX2 LU data latch -> dest (load)
dest -> SU data latch (store)

jump/ EX1 src1,src2 -> ALU -> tempreg
compare&jump EX2 (if cond then) tempreg -> PC (jump)

src1,src2->ALU->cond,if cond then tempreg->PC
(compare and jump)

vector EX1 parameters(addr etc.)->Vector Load/Store Unit
load/store initiate VLU/VSU
vector EX1 VRsrc1[0],VRsrc2[0] -> vector int/logic pipe
int/logic VRsrc1[1],VRsrc2[1] -> vector int/logic pipe
operation EX2 initiate vector int/logic pipe controller

Vector vector EX1 VRsrc1[0],VRsrc2[0] -> floating add/sub pipe
instruc- floating VRsrc1[1],VRsrc2[1] -> floating add/sub pipe
tion operation EX2 VRsrc1[2],VRsrc2[2] -> floating add/sub pipe

(add/sub) VRsrc1[3],VRsrc2[3] -> floating add/sub pipe
EX3 initiate vector float add/sub pipe controller

vector EX1 VRsrc1[0],VRsrc2[0] -> floating mult/div pipe
floating VRsrc1[1],VRsrc2[1] -> floating mult/div pipe
operation EX2 VRsrc1[2],VRsrc2[2] -> floating mult/div pipe
(mult/div) VRsrc1[3],VRsrc2[3] -> floating mult/div pipe

EX3 VRsrc1[4],VRsrc2[4] -> floating mult/div pipe
VRsrc1[5],VRsrc2[5] -> floating mult/div pipe

EX4 initiate vector float mult/div pipe controller

3.3 Instruction Scheduling
Instruction scheduling is one of the crucial
issues affecting processor performance in a
pipeline processor. In Jetpipeline, instruction
scheduling controls the distribution of
instructions from the instruction cache to the four
instruction pipelines. This section discusses the
principle of Jetpipeline instruction scheduling.

The instruction scheduling of Jetpipeline is
performed statically by software at compile time.
As illustrated in Section 3.1, Jetpipeline
hardware configuration affects the possible
execution order of instructions. In order to
achieve satisfactory performance of every
operation units of Jetpipeline, basic scheduling
rules are necessary. We describe the
scheduling rules as follows.

• The execution of an instruction that uses the
results of its predecessor scalar floating point
instruction must be delayed until the results are
obtained. During this period, NOP or other
instructions that do not rely on the execution
order should be inserted into the pipeline.

• It takes multiple clock cycles to execute a
vector instruction. NOP or concurrently
executable instructions should be inserted
between continuously executed vector
instructions with data-dependent relation to
adjust the timing of execution.

• Delayed branches are also adopted as general
RISC architectures in Jetpipeline. Some
instructions or NOP are also inserted in delay
slots after a branch instruction.

5

Program

Memory

IP0

IP1

Scalar

Registers

Vector

Registers

Data Memory

Float Add/Sub pipe 0

Float A/S pipe controller 0

Float Mult/Div pipe 0

Float MUL/DIV pipe controller 0

VALU0

VALU controller 0

Float Add/Sub pipe 1

Float A/S pipe controller 1

Float Mult/Div pipe 1

Float MUL/DIV pipe controller 1

VALU1

VALU controller 1

ALU0

ALU2

ALU3

SU2

SU3

SU0

SU1

LU3

LU2

LU1

LU0

VLU0

VSU0

VSU1

VLU1

VLU2

VSU2

VSU3

VLU3

IP2

IP3

ALU1

Vector processing unit 0

Figure 7 : Block diagram of the Jetpipeline simulator.

Vector processing unit 1

W
S

h
C

ai
n

ni
g

e
N

t w
ro
k

W
S

W
S

W
S

W
S

Figure 6 : Examples of scheduling.

Com-
pare i

Cond.
Jump

Addr
Calc
a[i]

Vector
Load
a[i]~

Addr
Calc
b[i]

Vector
Load
b[i]~

Vector
Mult.
c=a*b

(NOPs)
Vector
Store
c[i]~

Jump i=
i+128
(delay slot)

for i=0 to n do c[i] = a[i] * b[i]

Addr
Calc
c[i]

i=0

Exit loop

IP0

(b) 1IP scheduling.

i0=0 Com-
pare
i0

Cond.
Jump

Addr
Calc
a[i0]

Vector
Load
a[i0]~

Addr
Calc
b[i0]

Vector
Load
b[i0]~

Vector
Mult.
c=a*b

Addr
Calc
c[i0]

Vector
Store
c[i0]~

Jump

i1=
i1+256
(delay slot)

i0=
i0+256
(delay slot)

i1=128 Addr
Calc
a[i1]

Vector
Load
a[i1]~

Vector
Mult.
c=a*b

Addr
Calc
c[i1]

Vector
Store
c[i1]~

IP0

IP1

IP2

IP3
Addr
Calc
b[i1]

Vector
Load
b[i1]~

Exit loop

(NOPs)

(NOPs)

(NOPs)

(NOPs)

(c) 4IP scheduling.

(a) Source Program.

Figure 6 shows a practical scheduling example,
where the compilation of the loop program in
Figure 6(a) is examined.

Figure 6(b) depicts the scheduling results when
the number of instruction pipelines is 1.
Because the two vector instructions of LOAD a[i]
and LOAD b[i] cannot be continuously executed,
other executable instructions should be inserted
between the two vector instructions.

Figure 6(c) gives the scheduling results when
the number of instruction pipelines is 4. It can
be found that other concurrently executable
instructions are also inserted to prevent the
vector load instructions from overlapped
execution.

4. The Simulated Performance Studies

In order to evaluate the performance of the proposed
Jetpipeline architecture, simulation experiments
have been carried out. This section reports the
experimental results.

4.1 The Simulation Model
The simulation experiments are held based on
the hardware configuration shown in Figure 7,
where four instruction pipelines are included. In
order to evaluate the Jetpipeline operation units
and their controlling mechanism which reflect
the peculiarity of Jetpipeline, the following
assumptions are made.

• The restriction of the interconnection network
and the bank of registers are not taken into

account in the simulator. The parallel accesses
to the registers are performed with a satisfied
speed.

• The main memory accesses are finished within
one clock, and the memory latency are ignored.

4.2 The Assembler
The simulator is executed on the UNIX operating
system. Considering the software environment
of Jetpipeline, the assembler is already put into
use while the compiler is currently under
construction.

The assembler translates the Jetpipeline
instructions into the Jetpipeline machine code,
and offers the programs in the Jetpipeline
assembly language to the Jetpipeline simulator.
With the help of the assembler, the facility for
debugging programs can be utilized. The
simulator internal states, e.g. contents of
registers during executing programs, can be
traced, and break point of program execution
can be set.

4.3 The Simulation Results and Analysis
We run some benchmark programs on the
simulator to investigate the system performance
of the proposed Jetpipeline architecture. In our

6

1.0

1.0

1.0

15.6

28.9

4.2

1.5

3.9

11.5

1.7

10 20 30

KERNEL 1
1IP-Scalar

1IP-Vector

4IP-Scalar

4IP-Vector

KERNEL 3
1IP-Scalar

1IP-Vector

4IP-Scalar

4IP-Vector

KERNEL 5
1IP-Scalar

4IP-Scalar

Speedup

Figure 8 : Experimental results of simulations.

research, we chose Livermore loops[1 5] that
are well used to evaluate performance of
supercomputers as benchmarks. Livermore
loops are constructed for a spectrum of
computation-intensive benchmarks by Lawrence
Livermore National Laboratory. A number of
loops are composed in the Livermore loops
including those both easy to vectorize and
difficult to vectorize.

In this section, we present the simulation results
of three representative Livermore loops
(KERNEL 1, KERNEL 3, and KERNEL 5).
These loops written in FORTRAN are translated
into the form of the Jetpipeline assembly
language manually, and then are assembled
into the Jetpipeline machine code by the
assembler. The simulator executes these
programs and outputs the number of clock
cycles as execution time for each loop.

Figure 8 shows the execution results in terms of
speedup. The speedup is measured against the
execution cycles when the number of instruction
pipeline is 1 and only scalar instructions are
used. The notation of nIP-Scalar in Figure 8
means the case that the number of instruction
pipeline is n and just scalar instructions are
used. Similarly, the notation of nIP-Vector
means the case that the number of instruction
pipelines is n and both scalar and vector
instructions are used.

KERNEL 1 calculates hydro fragment, and it is
easy to be vectorized. Therefore, high
speedups were achieved as the result of its high
degree of parallelism. Especially, in case of
4IP-Vector, the speedup rises up till 28.9.
Because the jump instructions and instructions

calculating array address for loop counter are
also parallelized, one instruction cycle was
removed when executing instructions of the
loop. Consequently, the speedup went up to
4.2 over the optimal one in the case of 4IP-
scalar.

KERNEL 3 calculates vector inner product.
Although it possesses quite amount of
parallelism, just a part of its operations can be
vectorized. The part of multiplication is
performed by the vector instructions while the
part of sum is performed by the scalar
instruction. Lower speedups were obtained
when compared with KERNEL 1. However, in
the case of 4IP-Vector, the speedup of 12 times
was obtained because the calculation of sum
can be unfolded and parallelized.

KERNEL 5 calculates tri-diagonal elimination of
below diagonal which is a sequential program.
Neither can it be parallelized, nor vectorized.
No speedup can be obtained with traditional
methods. However, Jetpipeline aims the lower
level parallelism so that the speedup of about
1.7 was achieved.

The simulation results are measured without the
consideration of the interconnection network and
memory latency. However, the executed
benchmark programs are not so large that whole
of each of the programs can be contained in
cache. Therefore, the simulation results will
not vary greatly even if taking the above factors
into account. The complete simulator is now
being constructed, and practical implementation
should be done.

5. Conclusions

This paper proposed a hybrid processor architecture
named Jetpipeline for instruction-level parallelism.
Jetpipeline absorbs the flexibility of superscalar
machines and the conciseness of VLIW machines.
Performance simulation results shows a good
performance. Not only can the programs easy to
vectorize be effectively accelerated, but also the
programs difficult to vectorize can be speeded up.
Therefore, Jetpipeline is a promising candidate for
architectures exploiting instruction-level parallelism.

References
[1] T. Agewala and J. Cocke, "High performance

reduced instruction set processors," IBM Tech.
Rep., March 1987.

7

[2] " MC 88110 Second genera t ion R ISC
microprocessor user's manual", Motorola Inc.,
1991

[3] N. P. Jouppi, "The nonuniform distribution of
instruction-level and machine parallelism and its
effect on performance," IEEE Trans. Comput.,
vol.38, No.12, pp.1645-1658, December 1989.

[4] A. E. Charlesworth, "An approach to scientific
array processing: The architectural design of the
AP-120B/FPS-164 family," Computer, vol.14,
No.9, pp.18-27, September 1981.

[5] J. A. Fisher, "Very long instruction word
architectures and the ELI-512," Proc. 10th
Annual International Symposium on Computer
Architecture, pp. 140-150, June 1983.

[6] J. R. Ellis, "Bulldog: A compiler for VLIW
architectures," The MIT Press, 1986.

[7] R. P. Colwell et al., "A VLIW architecture for a
trace scheduling compiler," IEEE Trans.
Comput., vol.C-37, No.8, pp.967-979, August
1988.

[8] J. L. Hennesy et al., "MIPS:A VLSI processor
architecture," Technical Report No.223,
Computer Systems Laboratory, Stanford
University, November 1981.

[9] D. A. Patterson and C. H. Séquin, "A VLSI
RISC," Computer, pp.8-22, September 1982.

[10] J. L. Hennessy, "VLSI Processor Architecture,"
IEEE Trans. Comput., pp.1221-1246, December
1984.

[11] D. A. Patterson, "Reduced Instruction set
computers," Comm. ACM, pp.8-21, January
1985.

[12] D. Tabak, "RISC System," Research Studies
Press Ltd., 1990.

[13] T. Gross and J. Gill, "A short guide to MIPS
assembly instructions," Technical Note No.83-
236, Computer Systems Laboratory, Stanford
University, November 1983.

[14] A. Jippo et al., "The supercomputer SX system:
hardware," Proc. of the second international
conference on supercomputing, vol.1, pp.57-64,
1987.

[15] F. H. McMahon, "The Livermore Fortran Kernels
test of the numerical performance range," in
Performance evaluation of supercomputers, J. L.
Martin ed., North Holland, Amsterdam, 1988,
pp.143-186.

