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Abstract

High performance processors based on pipeline processing play an important role in
scientific computation.   We have proposed a hybrid pipeline architecture named Jetpipeline
in our former work.   The concept of Jetpipeline comes from the integration of superscalar,
VLIW and vector architectures.   Jetpipeline has multiple instruction pipelines, which
execute multiple instructions like superscalar architectures.   Instructions to be executed
simultaneously are statically scheduled by a compiler like VLIW architectures.   Therefore,
parallelism derivation and instruction scheduling are very important for Jetpipeline.
Software pipelining is one of the well-known techniques to achieve high throughput when
processing loop programs.   In this paper, we propose software pipelining for Jetpipeline.
Firstly, the overview of the Jetpipeline architecture is described.   Then the banked
register configuration of Jetpipeline for reducing hardware complexity and supporting
software pipelining is presented.   Finally, the effectiveness of software pipelining for
Jetpipeline is discussed by simulation.

1  Introduction

The progress in modern science and technology has brought us with a rapid increase in fast
and massive computation requirements.   Although the important development of VLSI
technology allows a stable increase in the speed of processors,  it is quite difficult to
keep the speed growth of processors depending on hardware technology alone.

On the other hand, a novel processor architecture can provide us with high
performance/price ratio by reasonably organizing existing hardware devices. The
implementations of superscalar machines[1 ][2 ] [3 ] and VLIW machines[3 ][4 ] [5 ] [6 ] [7 ] are two
good examples drawing wide attention besides vector machines.

We have proposed Jetpipeline in [8], which is a hybrid pipeline architecture absorbing
advantages of superscalar machines, VLIW machines and vector machines.   Jetpipeline can
issue multiple instructions in one clock cycle like a superscalar machine.   However, the
scheduling of Jetpipeline instructions is statically performed at compile time to prevent
complicating hardware configuration.   Jetpipeline possesses higher flexibility than a VLIW
machine because instructions executed simultaneously in Jetpipeline are just grouped together
rather than encoded in a fixed long word like VLIW machines.

In Jetpipeline, extracting parallelism from programs and code scheduling are statically
performed by a compiler.   Therefore, it is important to pay sufficient attention to the
compiler so as to make Jetpipeline achieve its expected high performance.    In this paper,
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we introduce the software pipelining technique[9 ] into the compiler of the Jetpipeline
architecture.   Software pipelining is one of the well-known techniques deriving parallelism
from loop programs so that high performance can be achieved.   We also propose an instruction
code scheduling strategy.   The effectiveness of the scheduling strategy is evaluated and
discussed by examining the results of software simulation.

The rest of this paper is organized as follows.   Section 2 gives the overview of
Jetpipeline.   The design details such as hardware configuration and the instruction set of
Jetpipeline are presented.    In addition, a basic scalar instruction scheduling strategy is
also discussed in this section.   Section 3 presents software pipelining for Jetpipeline.
In this section, a code scheduling scheme and register renaming is described.   Simulated
performance studies are presented in Section 4.  Finally, the paper concludes with Section 5.

2  The overview of Jetpipeline

2.1  Basic concept of Jetpipeline

As mentioned before, Jetpipeline exploits instruction-level parallelism.   Jetpipeline has
four instruction pipelines.   ALUs and floating point arithmetic pipelines are used at the
execution stages of these instruction pipelines. Figure 1 gives the concept of the
Jetpipeline architecture.   As shown in Figure 1, when the inputted instructions, data and
the outputted results are considered as air, fuel and burnt gas, respectively, the entire
system can be considered as a jet engine.   Therefore, we call the architecture Jetpipeline.

In Jetpipeline, multiple instructions can be issued in one pipeline cycle like a
superscalar machine.   The compiler for Jetpipeline schedules instructions and packs several
instructions for the same pipeline cycle as a group.   At run time, each of the packed
instructions is issued to a corresponding instruction pipeline, and is executed in parallel
with other packed instructions.   Hence, instruction scheduling is performed statically by a
compiler like a VLIW machine.   Therefore, Jetpipeline can be treated as a hybrid
architecture of superscalar machines and VLIW machines.

However,  Jetpipeline differs much from both superscalar machines and VLIW machines.
Although Jetpipeline issues multiple instructions per cycle, it does not schedule
instructions relying on complicated hardware at run time such as superscalar machines.   On
the other hand,  instructions executed simultaneously in Jetpipeline are just packed together
rather than fixed in a long word as VLIW machines.   Thus, Jetpipeline is not only more
flexible than VLIW machines, but also more concise than superscalar machines.   A waste of
instruction bits in VLIW machines can also be avoided.

Jetpipeline also has vector operation facilities to obtain high performance on vectorable



parts of programs.   Since we concentrate on parallelization of non-vectorable parts of
programs, the vector facilities in Jetpipeline will not be discussed in this paper.

2.2  Hardware configuration

Figure 2 shows the system configuration of Jetpipeline with four instruction pipelines.
Each of the instruction pipelines(IP) consists of six stages. They are instruction fetch,
instruction decode and register fetch, ALU operation, memory access, writeback and floating
point data writeback stages.   These stages are overlapped every one clock cycle.   Because
arithmetic logic units(ALUs) is used most frequently for executing scalar instructions,  it
is necessary to provide one ALU for each instruction pipeline. In addition, each
instruction pipeline has an address ALU to calculate target addresses for jump instructions.
In Figure 2,  each of the two vector processing units(VPUs) consists of three floating point
calculation pipelines(FP pipes) for floating point arithmetic operations, an ALU for vector
operations(VALU), and a controller for vector operations.   Since these two units are shared
by arbitrary adjacent instruction pipelines,  the same kind of vector instructions cannot be
executed in parallel at two adjacent instruction pipelines. In addition, the three
floating point operation pipelines(add/sub, mult, div) in each unit are shared by both vector
instructions and scalar instructions.   The interconnection network(CN) between these two
units is designed for chaining multiple vector operations.

In Jetpipeline,  the data transmission between registers and the main memory relies on the
scalar load/store units(SLSUs) and the vector load/store pipelines(VLSPs).   Moreover, the
instruction cache(Inst.Cache) is employed to decrease the memory access latency at the
instruction fetch stage.   Registers used in Jetpipeline are divided into vector registers
(VRs) and scalar registers(SRs).   In order to support conditional instructions,  the vector
mask register(VMR) is also prepared for vector instructions.

2.3  The banked and overlapped register file

In the original concept of Jetpipeline,  scalar registers are fully shared by all four
instruction pipelines to realize flexible accesses from any of the four instruction
pipelines.    However, the connection network between registers and instruction pipelines
will become quite complicated in this case.   For example, assuming that a crossbar network
were used here, the number of all datapath switches would reach 65536, and this seems to be
an impractical number.

To moderate the hardware complexity while keeping the flexibility for register accesses,
we develop a banked and overlapped register file as scalar registers.   Figure 3 depicts the
configuration of the register file, which is divided into one global block and eight
local/overlap blocks.   The global block can be accessed by all IPs and is used to broadcast
commonly used data among IPs.   The local blocks are accessed by their corresponding IPs
only, and used to hold IP-local data.   The forward/back blocks are shared by two adjacent
IPs and used to exchange data each other.   Since the forward block of IP3 is wrapped around
to the back block of IP0, it takes two hops at most to send data between any two IPs.

We discuss an implementation example of the banked and overlapped register configuration,
where each register block is constructed from a conventional register file with two read
ports and two write ports and the switches are 1-to-4 selector/multiplexers.   In this case,
the number of all datapath switches is reduced to 2048, and this is approximately about 1/32
of that in crossbar implementation.

It is not difficult to find that the banked and overlapped register file satisfies both
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Fig.3 The configuration of the banked and overlapped register file.

moderate hardware complexity and register access flexibility.   Furthermore, this register
configuration provides hardware supports useful for software pipelining that will be
discussed in Section 3.

2.4  The instruction set and the basic code scheduling scheme

The instruction set of an architecture reflects the function of the architecture.   The
instruction set of Jetpipeline is not an exception.   In order to keep the conciseness of the
Jetpipeline architecture,  we build up the instruction set for Jetpipeline based on RISC
approaches[1 0 ][1 1 ] [1 2 ] [1 3 ].   The length of Jetpipeline instructions is fixed to 32 bits.

The scalar instructions of Jetpipeline are designed based on the Stanford MIPS
microprocessor architecture[1 0 ] [1 4 ].   The scalar instructions include load/store, arithmetic
operation and branch instructions.   The branch instructions include the compare-and-jump
instructions in addition to the branch instructions based on condition codes.

The vector instructions are designed referring the NEC SX supercomputer[1 5 ].   The vector
instructions include vector load/store instructions,  vector register instructions of integer
and floating point operations, mask register operation instructions, and so on.

Instruction scheduling is one of the important issues affecting processor performance in a
pipeline processor.   The instruction scheduling of Jetpipeline is performed statically by
software at compile time and there is no run time scheduling hardware like superscalar
machines.   To achieve the satisfactory performance of every operation units of Jetpipeline,
the following basic scheduling strategies are necessary.

• The execution of an instruction that needs the results of its predecessor scalar load
instructions or scalar floating point instructions must be delayed until the results are
obtained.   During this period,  NOP or other instructions that do not depend on the
execution order should be inserted.

• The technique of delayed branches is also adopted in Jetpipeline as the RISC
architecture.  Their delay slots are utilized to insert the instructions which do not
affect to jump instructions.

3   Software pipelining for Jetpipeline

Software pipelining[9 ] is a technique effectively dealing with loop programs, which yields
high instruction-level parallelism. It is applicable to RISC, CISC, superscalar,
superpipelined, and VLIW processors to extract parallel processing capability of these
processors.   Therefore, we make use of software pipelining to perform loop scheduling, which
is the crucial problem in instruction scheduling.   In this section, we describe the software
pipelining for Jetpipeline, and shows an scheduling example.   We use the following source
program example to explain our strategy.



for k := 1 to n do
begin

x[k] := q + y[k] * (r * zx[k+10] + t * zx[k+11]);
end

The loop body of this example program is translated into assembly codes as follows, which
only use local registers(%L):

1: L5: ld %L9,%L1,%L2 8: add %L6,%L2,%L2
2: mul %L5,%L2,%L2 9: st %L7,%L1,%L2
3: ld %L0,%L1,%L3 10: addi %L2,1,%L2
4: mul %L4,%L3,%L3 11: cmp %L2,%L5
5: add %L2,%L3,%L2 12: jc LE,L5
6: ld %L4,%L1,%L3 13: addi %L1,4,%L1 ;delay slot of jc
7: mul %L2,%L3,%L2

The software pipelining for Jetpipeline is performed based on four steps. They are: (1)
extract innermost loop bodies; (2)calculate initiation interval; (3)unroll steady state; (4)
rename registers.   The following of this section gives a detailed discussion of these steps.

3.1  Calculating initiation interval

When software pipelining is applied to an innermost loop, both of the resource and the
precedence constraints must be taken into account.   The resource constraint means the number
of execution units simultaneously available to execute software pipelined codes.   The
resource constraint in Jetpipeline can be considered as four, because Jetpipeline executes
instructions issued from four IPs per cycle.   On the other hand, the precedence constraint
will appear when an instruction requires the result of its previous iteration. The
iterations with the precedence constraint can not be initiated until the previous results are
obtained.   Thus, the initiation interval(II) can be determined by considering both resource
constraints and precedence constraints.   Because the example program has no precedence
constraints in assembly code, II is given by the following equation:

II =  [number of instructions / max (resource constraints, precedence constraints)]
=  [13 / 4]
=  [3.25]
=  4

Here, [] is a ceiling function.

3.2  Unrolling steady state

When a software pipelined loop is in a steady state, several iterations of the original
loop are processed in parallel.   The variables of each iteration executed in parallel have
the same name in the loop.   If a certain register is assigned to such variables, the
register is overwritten in every iteration.   Therefore, correct results can not be obtained
in such a situation, because register conflicts occur.

To solve this problem, we use multiple registers for one variable when variables of several
iterations are allocated to the same register.   It is necessary to unroll a steady state
several times for allocating multiple registers to a variable.   We determine the degree of
unrolling based on lifetimes of the registers allocated to one variable.   The degree of



unrolling is obtained by dividing the maximum lifetime in the loop body with the initiation
interval.

In the example program, the longest lifetime of registers is that of local register%L2,
since %L2 is alive from the first instruction to the ninth instruction.   Therefore, we can
obtain the degree of unrolling as shown in the following equation:

N_unrolling =  [max (lifetimes of each registers) / II]
=  [9 / 4]
=  [2.25]
=  3

Hence, the assembly sequence after software pipelining with the consideration of the
initiation interval and the degree of unrolling can be shown as follows (only operation codes
are shown here):

IP1 IP2 IP3 IP4 IP1 IP2 IP3 IP4 IP1 IP2 IP3 IP4

1 addi st add ld 5 addi st add ld 9 addi st add ld
2 nop addi ld mul 6 nop addi ld mul 10 nop addi ld mul
3 nop cmp mul ld 7 nop cmp mul ld 11 nop cmp mul ld
4 nop jc add mul 8 nop jc add mul 12 nop jc add mul

Each of four-line blocks (1~4, 5~8, 9~12) shows the steady state and is unrolled three
times, and one column shows instructions in an IP.   After unrolling the steady state, each
register is renamed to utilize the register file of Jetpipeline correctly.

3.3  Register renaming

The register reallocation of software pipelined codes is performed in order to assign
independent registers to each variable of every iteration.   Therefore, it is important to
independently deal with each iteration in the software pipelined loop.   The register file of
Jetpipeline is divided into several banks, each of which includes local registers and
overlapped registers.   Iterations assigned to the local registers are kept independently.

When software pipelined codes are executed on Jetpipeline, each iteration occupies one
instruction pipeline independently. However, when a new iteration starts, iterations
currently being executed have to be shifted to their adjacent IPs, respectively, because of
the resource constraint of Jetpipeline.   It means that only four iterations can be executed
simultaneously, since there are just four IPs.   The register renaming strategy for software
pipelined codes in Jetpipeline is simple.   We just need to consider how to utilize the
overlapped registers and the global registers.   The overlapped registers are reallocated
when an iteration is shifted to its adjacent IP.   The global registers are assigned to a
variable referred by all iterations. The other variables are allocated to the local
registers.   The following assembly sequence shows the results after renaming registers in
the steady state of the example program.

IP1 IP2 IP3 IP4

addi %G1,4,%G1 st %G7,%G1,%F2 add %F2,%F3,%L2 ld %G3,%G1,%L2
nop addi %G2,1,%G2 ld %G4,%G1,%L3 mul %G5,%L2,%B2
nop cmp %G2,%G5 mul %L2,%L3,%L2 ld %G0,%G1,%L3
nop jc LE,L5 add %G6,%L2,%B2 mul %G4,%L3,%B3

The variables referred by every iteration are assigned to global registers(%G), which are
the base addresses of the array in this example.   The destination registers are assigned to
the back block overlap registers(%B), when the destination registers are used as source



Table 1 Experimental results of simulations.
Sequential Dispatch stack Software pipelining

cycles cycles (speedup) cycles (speedup)

KERNEL 1 19032 8015 (2.37) 5024 (3.79)
KERNEL 3 9019 5012 (1.80) 3344 (2.70)
KERNEL 5 3083 1543 (2.00) 1212 (2.54)
KERNEL 7 11503 5383 (2.14) 3111 (3.70)
KERNEL 9 6110 2107 (2.90) 1650 (3.70)

registers in the next unrolled steady state.   Of course, the source registers to read the
results obtained in the previous steady state are also assigned to forward block overlap
registers(%F).

4  The simulated performance studies

4.1  The simulation model

In order to evaluate the performance of Jetpipeline using software pipelining, simulation
experiments have been carried out.   We constructed a software simulator using the C
language, in which all functional units depicted in Figure 2 are simulated except vector
facility.   In order to evaluate the effectiveness of software pipelining, the following
assumptions are made.
• The scalar registers are banked and overlapped as shown in Figure 3.   Thus, the maximum

number of read/write accesses to each register bank in the same clock is limited to two.
• The accesses to the main memory are finished within one clock, and the memory latency are

ignored because the benchmark programs are small enough to be contained in the cache.

4.2  The simulation results and analysis

We run some benchmark programs on the simulator to investigate the system performance of
Jetpipeline.   In our study, we chose Livermore loops[1 6 ] that are well used to evaluate
performance of supercomputers as benchmarks.   Livermore loops are composed of many kinds
of loops in which some are easy to be parallelized and some are difficult.

In this section, we present the simulation results of five representative Livermore loops
(KERNELs 1, 3, 5, 7, and 9).   First, source programs of Livermore loops are compiled to
instructions from the SPARC instruction set by the GNU C compiler with optimization,  and
then are translated into Jetpipeline assembly codes.   Unrolling loops and scheduling based
on software pipelining are semi-automatically performed.   Register renaming and scheduling
to solve constraints from the configuration of instruction pipeline are manually carried out.
Assembly codes are assembled into the Jetpipeline machine codes by the assembler.   The
simulator executes these programs and outputs the number of clock cycles as execution time.

Table 1 shows the execution results in terms of execution cycles and speedup ratio.   The
speedups are measured against the execution cycles when the number of instruction pipelines
is 1.   The case using the dispatch stack[1 7 ] for parallelization is also shown in Table 1
for comparison.   A compiler with the dispatch stack scheme parallelizes the sequential codes
by means of only checking dependencies of operands.

KERNELs 1, 7 and 9 are easy to be parallelized and vectorized because they do not have
dependency between iterations of their loops.   Therefore, high speedup can be achieved as a
result of its high degree of parallelism.   Especially, in the case of software pipelining
the speedup of 3.70 ~ 3.79 has been achieved.

KERNELs 3 and 5 have the dependency between iterations of their loop.  Hence it is not easy



to parallelize and vectorize these programs.   However, Jetpipeline using software pipelining
achieves the speedup of 2.70 for KERNEL 3 and 2.54 for KERNEL 5.

In all cases, software pipelining has obtained sufficient speedups for loop programs. The
performance of dispatch stack scheme is not so good as that of the software pipelining in our
results.   If appropriate preprocesses such as the loop unrolling were introduced into the
dispatch stack scheme, the performance may be improved.   However, this causes a large
amount of overhead for data independency check among operands.   The dispatch stack scheme
also has an advantage that it can be applied to the non-loop part of a program.   Therefore,
the combination of these two schemes can be used for practical applications.

The simulation results are measured without the consideration of memory latency.
However, the data transfer delay between registers and memory may affect overall
performance. The complete simulator including these factors is currently under
construction, and the consideration about the memory system such as data cache or statically
code scheduling scheme which takes memory latency into account must be studied for practical
implementation.

5  Conclusions

This paper proposed the software pipelining scheme for Jetpipeline.   Jetpipeline absorbs
the flexibility of superscalar machines and the conciseness of VLIW machines.   Simulation
results shows a good performance by using software pipelining in Jetpipeline.   Not only can
programs easy to be parallelized be effectively accelerated, but also programs difficult to
be vectorized or parallelized can be speeded up.   Therefore, Jetpipeline with software
pipelining is a promising candidate for architectures exploiting instruction-level
parallelism.
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